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∗Department of Computing, Imperial College, London, UK. ptorres,sgc@doc.ic.ac.uk
+Knowledge Media Institute, The Open University, UK. s.rueger@open.ac.uk

Abstract. We present a novel image filter generation method and an
image filter retrieval algorithm and analyse their properties. Based on
an original image and a filtered version of the original, the retrieval al-
gorithm can find, to a high probability, which filter was applied to the
original from a large pre-defined list of filters, without having to apply
all filters to the original image, which is usually a time consuming task
when the number of filters is large. This is achieved by pre-computing
image annotations for a set of filtered images obtained by applying the
pre-defined filters to a database of 50 images. Using standard image-
based annotation techniques, we show that the filter retrieval can be
achieved by taking the closest images to the original from the database
and analysing those known images instead. The retrieval algorithm has a
set of parameters and we present results of experiments with these values
to maximise the probability of retrieving the correct filter.

1 Introduction

Image filtering [4] is the process whereby the pixel information of a digital im-
age is mathematically manipulated to produce an altered version of the image.
Image filtering is a very commonplace process in graphic design, and modern
software packages such as Adobe Photoshop include hundreds of image filter-
ing techniques ranging from simple edge detection to the production of artistic
images simulating watercolour effects, etc. Along with other graphics packages,
Photoshop enables browsing through the range of filters and their parameteri-
sations. We address here the question of searching through a database of image
filters to find a match given an image and a filtered version of the image, or
given only the filtered version of the image. Potentially, this may enable a novice
user to more easily produce an image effect, because they can supply an exem-
plar of the kind of effect they wish the image filter to produce, and experiment
with the image filters which are returned from the search, rather than having
to browse through sequences of filter applications. Another potential application
of the retrieval algorithm described here may be medical imaging [1]. Here, the
system could be used to retrieve filters which enhance certain characteristics of
an image under analysis, so that a particular aspect of the image becomes more
prominent.

To determine good methods for searching for filters, we work with 1000 image
filters of our own devising, as described in §2. In §3, we describe the retrieval



Fig. 1. Example image filter tree consisting of transforms in blue circles: A=Add
Colour, C=Convolution, I=Inverse, M=Median and T=Threshold; and compositors
in red squares: A=And, F=Fade, M=Min and O=Or. Image inputs are in green dia-
monds. An example original image and the filtered version are shown.

methods we have experimented with, and in §4, we describe our experiments and
the results. We conclude that – at least with the 1000 image filters we have been
working with – it is possible to retrieve a filter given a single image produced
by it, to a high degree of probability. We further discuss some future directions,
including the application of machine learning techniques to this problem.

2 Image Filter Database

Our database consists of 1000 image filters, each of which can be represented as a
tree of fundamental (unary) image transform such as inverse, lookup, threshold,
colour addition, median, etc., and also (binary) image compositors such as add,
and, divide, fade, max, min, multiply, or, subtract, xor, etc., as described in [5]
and [7]. An example tree is provided in figure 1. We see that the overall filter
uses seven transform steps and six compositor steps, and that the original image
is input to the tree seven times. The 1000 filters were produced by randomly
generating a tree structure subject to a limit on the number of nodes (usually 30),
with each transform and compositor added to the tree with random parameter
settings, e.g., the median transform takes two parameters, the first of which
determines the way in which the median RGB values of each pixel is calculated,
and the second of which determines the extent of the neighbourhood that is
taken into account when the median is calculated. Each time an image filter
generated in this random way produced an interesting visual effect on one or
more original images, it was added to the database. The time taken to apply a
filter is roughly proportional to the size of the input image and the size of the
tree. Over the entire database of filters, the average number of nodes in a tree is



13.62, and the average time1 to apply a filter to an image of dimension 256 by
384 pixels (the size used for the experiments reported here) is 410 milliseconds.
Hence it would take a little under 7 minutes to apply the entire set of filters to
an image of this size. In practice, images tend to be larger than this, and hence
the application of all the filters to an image for search purposes is infeasible.

3 Retrieval Techniques

3.1 Definitions

An image is a function I : {0, . . . , N} × {0, . . . , M} → {0, . . . , 255}3, for some
N and M . The set of all images will be denoted by I. A filter is a function
F : I → I. The set of all filters will be denoted by F . The symbol F (I) will
then stand for the application of filter F to image I.

An annotation2 of dimension d is a function A : I → R
d. The set of all

annotations of dimension d is denoted by Ad and the set of all annotations

is defined as A = ∪∞d=1Ad. Writing Pz = {(w1, . . . , wz) ∈ R
z|∀i.0 ≤ wi ≤

1 ∧
∑z

i=1 wi = 1}, we define a set of weighted annotations to be a pair (A0, w)
such that A0 ∈ A and w ∈ P|A0|. The set of all weighted annotations is denoted
by W .

Let I be an image, (A0, w) a set of weighted annotations and A ∈ A0 an an-
notation of dimension d. The R

d vector A(I) is called the annotation of I via A or
an A-annotated image. We can introduce metrics in the space of A-annotations
using any existing metric for R

d. For example, we may define the distance be-
tween two images, I and J , as the weighted Euclidean distance between pairs of
real vectors Ak(I) and Ak(J) for each Ak ∈ A0:

D(A0,w)(I, J) =

|A0|∑

k=1

wk · d(Ak(I), Ak(J)) (1)

where d is the usual Euclidean distance. We will use the symbol 2X , where X is
a set, to denote the power set of X .

3.2 Problem Formulation

The problem we address here is as follows: given (i) an image I ∈ I, (ii) a set of
filters F0 and (iii) a filtered version of I, I ′ = F (I), for some F ∈ F0, determine
the filter F . A straightforward näıve algorithm to solve this problem is shown
below. The Näıve algorithm simply applies all filters to the user image and
checks which filter achieves the same end image. The problem with this näıve
algorithm is that we are generally interested in the case where F0 is a large set

1 On a MacOs X machine running at 2.6Ghz.
2 An annotation is a vector of what are usually called features of an image, which in

turn are real values computed from that image.



Filter(ID : 2I ,FD : 2F ) : 2I

1. IF ← ∅
2. for each I ∈ ID

1. for each F ∈ FD

1. IF ← IF ∪ {F (I)}
3. return IF

Näıve(FD : 2F , IU : I, I ′
U : I) : FD

1. IF ← Filter({IU},FD)
2. for each I ′ ∈ vF

1. if I = I ′
U

1. F ← filter which produced I ′

2. return F

and applying thousands of filters to an image is very time consuming. Moreover,
we are interested in finding an efficient algorithm for the above problem for the
case where the filter retrieval operation is to be performed repeatedly. So, we
can concede some initial offline computation time if we can have fast retrieval
thereafter.

3.3 Filter Retrieval Algorithm

We will now present a general algorithm to perform such filter retrieval, which
is described below in pseudo-code. We start with a database of images, ID,
and filters, FD, a set of weighted annotations (A0, w) and three integers which
parameterise the algorithm. We start by choosing a random sample of size O

of the image database ID and choose the N images of that sample which are
closest to the user image, IU . We denote this set of closest images by C. Note
that the distance between two images I and J is measured here as the weighted
Euclidean distance between their annotations obtained via A0, as described by
Equation (1). We then retrieve the filters which, applied to the images in C,
yield images closest to the user-given filtered image, I ′U . This set of filters FR is
then returned. Given an integer K, a set X and a function f : X → R. The set
argminK

x∈X{f(x)} represents the K values of x which yield minimum values for
f(x). If multiple values of x yield the same minimum value for f , we take the
resulting set to be the union of all those values of x.

Retrieve(ID : I,FD : F , (A0, w) :W, (N, O, T ) ∈ N
3) : FD

1. S ← randomSample(O, ID)

2. C ← argminN

I∈S
{

P|A0|
k=1

wk · d(Ak(I),Ak(IU))}

3. FR ← argminT

F∈FD
{

P

I∈C

P|A0|
k=1

wk · d(Ak(F (I)),Ak(I ′
U ))}

4. return FR

In the algorithm, given an image I, we write Ak(I) to be the kth-annotation
of I. Note that, in this algorithm, all images in the database have been previously
filtered and both original and filtered images have been annotated beforehand.
This means that at retrieval time both Ak(I) and Ak(F (I)) are known and no
calculations are needed other than Euclidean distances between vectors. The
only annotations to compute at retrieval time are Ak(IU ) and Ak(I ′U ).



4 Experimental Results

The Retrieve algorithm can be assessed by choosing particular parameters and
comparing the retrieval accuracy and retrieval time. For ID, we hand-picked 50
images from the Corel Stock Photo Library illustrating a wide range of everyday
images, including portraits and full-body pictures of men and women, cityscapes
and countryside scenes, among others. For FD we took the set of 1000 filters
described in §2. These filters represent a broad sample of the filter space F .

The set of annotations A0 chosen consists of four main modes of opera-
tion of the Annotate software, which has been used as an automated image
annotation system using global features in [6]. These were: (i) gabor with s=4
and o=6, (ii) linear HSV histograms with 4 × 4 × 4 sampling, (iii) RGB his-
tograms with 4 × 4 × 4 sampling and (iv) tamura with 3 × 3 tiling. The ex-
act Annotate command-line options for these modes were: -a gabor-4-6, -a
HSV lin-4x4x4-G, -a RGB-4x4x4-G, -a tamuraS-2-A.T3x3.

Having made these choices, the only remaining parameters of the Retrieve

algorithm were N , O, T and the set of four weights, w. To study this space of
parameters, we implemented the Retrieve algorithm and, for different choices
of the parameters, we measured the proportion of times that the correct filter
was found in the set of filters returned by the algorithm.

We started by studying the space of weights, [0, 1]4, for the particular setting
(N, O, T ) = (3, 50, 10), in which we considered the whole database of images ID

(O = 50) chose the closest 3 images (N = 3) and retrieved 10 candidate filters
(T = 10). Each test for a particular set of parameters (N, O, T, w) takes between
several minutes to more than an hour. Hence, we decided to explore the space
of weights non-exhaustively by hand. From this exploration, we concluded that
a good set of weights was w = (0.005, 0.465, 0.530, 0). It is not guaranteed to be
the best choice of weights but – as we see below – with this choice, the retrieval
method will find the correct filter in a set of 10 retrieved filters nearly 93% of the
time. Hence, these weights gave us a good starting point to explore the remaining
three parameters. The weights chosen reflect an almost identical weight of RGB
and HSV annotations and a small contribution of the gabor annotation; the
inclusion of the tamura annotation did not seem to increase the probability of
correct retrieval, but this can only be confirmed by a more exhaustive search of
the weight space.

For this particular set of weights, w = (0.005, 0.465, 0.530, 0), we assessed
how the remaining parameters affected the probability of correct retrieval, with
the results given in figure 2. We carried out three different sets of experiments:
(i) we fix O = 10, 50 and computed the probability of correct retrieval for vary-
ing N = 1, 2, 3, 5, 10, 25, 50 and T = 1, 5, 10, 25, 50 (each different value of T

produces one curve and each choice of O is shown in a different graph); (ii) we
fixed T = 10, 50 and computed the probability of correct retrieval for varying
N = 1, 2, 3, 5, 10, 25, 50 and O = 1, 2, 3, 5, 10, 25, 50 (each different value of O

produces one curve and each choice of T is shown in a different graph); (iii)
we fixed N = 2 and computed the probability of correct retrieval for varying
O = 2, 3, 5, 10, 25, 50 and T = 1, 5, 10, 25, 50 (each different value of T produces



one curve). In the sixth graph of figure 2, we show the retrieval times which
correspond to the setting of experiment (i) with O = 10.

From the first set of experiments (fixed O) we see that there is a maximum
for the parameter N and that it is generally attained for either N = 2 or N = 3.
This is particularly clear in the O = 50 graph. So, we conclude that it is good
to have more than one image to compare the user’s image to but that using
more than 3 images degrades the subsequent comparison of annotations. We
can also confirm that increasing T always improves retrieval success. This was
expected since returning more filters increases the probability that they contain
the correct filter but it shows us that the difference in results from taking T = 25
or T = 50 is small. Even for T = 10, the difference is still acceptable and this
choice seems to be a good compromise between probability of correct retrieval
and the amount of filters that the user still has to choose from after the retrieval.
For (N, O, T ) = (3, 50, 10), the probability of the required filter being present in
the 10 retrieved filters is 0.928.

From the second set of experiments (fixed T ), we see that increasing O always
achieves better results, which is expected since greater O means a larger image
database to work with and therefore more likelihood of finding an image which
is closer to the image provided by the user. Once again, there is a maximum for
N around 2 or 3 except for very small O where the initial database is so small
that in fact, it is better just to keep the closest image in the database. From the
third experiment (fixed N) we see that for N = 2, both increasing either T or
O always increases retrieval success as before. In the sixth graph in figure 2 we
present retrieval times corresponding to the first experiment with O = 10. We
see that retrieval times lie in the range 10−40 ms, are hardly affected by T , and
increase roughly linearly with N . For larger values of O (not shown) retrieval
times increase considerably but never raise above 300 ms. We will not therefore
emphasise comparison between retrieval times for the different parameters as
for practical purposes of user retrieval, the times are small (between 10 − 300
ms). We did not compute retrieval time for the Näıve algorithm as it is clear
from the algorithm’s definition that retrieval times will be dominated by the
filter application times which, when applied 1000 times, will add up to several
minutes. In future, we will apply the Näıve algorithm to the filters returned by
Retrieve, which will improve accuracy, but only degrade efficiency slightly.

Finally, we considered the scenario N = O separately. This can be seen as
equivalent to the case where the user only provides the Retrieve algorithm
with the filtered image I ′U but not the original image IU . If we do not know
the original image, we can simply pick one or more random images from the
database and compare their filtered versions to the filtered user image. This
amounts to changing the second line of the Retrieve algorithm to C ← S.
The results of this case are shown in the final graph of figure 2 for N = O =
1, 2, 3, 4, 5, 10, 20, 30, 40, 50 and T = 1, 5, 10, 25. We see that considering more
than 5 images in the database most of the times does not add to the retrieval
probability and that for T = 10, the probability now drops to around 0.727, but
if the user chooses from 50 retrieved filters (T = 50), the probability is 0.914.



5 Conclusions and Future Work

We have presented an image-filter retrieval algorithm which takes a user-given
image and filtered version of the image and retrieves a set of 10 filters (from
1000) which contains the applied filter with a probability of 0.928 in a fraction
of a second. The retrieval algorithm has 7 parameters and we have showed how
its behaviour is affected by changing these parameters. We find the best choice
for 3 parameters and near best choices for the remaining 4. We also show that
the method can retrieve the correct filter even if the original (unfiltered) image
is not given, albeit with a smaller probability of success.

In future, we plan to study how different distance metrics in step 2 of Re-

trieve affects its performance. Moreover, we will study how the choice of im-
age database may influence the probability of correct retrieval by repeating the
same experiments with different sets of images. We also plan to address the more
general problem of learning a set of properties for a required filter (or filters)
given a set of images and/or filters that the user has chosen through a browsing
mechanism. In particular, we will use mathematical theory formation [3] and
closed-loop learning [2] to approximate a user’s aesthetic preferences for image
filtering during a session. These preferences will then be used as a fitness func-
tion to search for and/or evolve image filters that may be of interest to the user.
In addition, we will investigate any benefit of our approach to medical image fil-
tering, and by replacing the compositors and transforms in our tree structure by
Photoshop actions, we plan to show that AI techniques can be used to increase
the benefit of graphic design software to designers and artists.
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Fig. 2. Probability of correct retrieval for experiments (i), (ii) and (iii) (first five
graphs) and retrieval times of O = 10 (sixth graph). The weights were set to
w = (0.005, 0.465, 0.530, 0). Final graph: the probability of correct retrieval for N = O.


