Towards a General Framework for Program Generation in Creative Domains

Marc Hull
Department of Computing
Imperial College
180 Queen’s Gate
London
SW72RH
mfh@doc.ic.ac.uk

Abstract

Choosing an efficient artificial intelligence approach for
producing artefacts for a particular creative domain can
be a difficult task. Seemingly minor changes to the solu-
tion representation and learning parameters can have an
unpredictably large impact on the success of the process.
A standard approach is to try various different setups in
order to investigate their effects and refine the technique
over time.

Our aim is to produce a pluggable framework for ex-
ploring different representations and learning techniques
for creative artefact generation. Here we describe our ini-
tial work towards this goal, including how problems are
specified to our system in a format that is concise but still
able to cover a wide range of domains. We also tackle
the general problem of constrained solution generation by
bringing information from the constraints into the gener-
ation and variation process and we discuss some of the
advantages and disadvantages of doing this. Finally, we
present initial results of applying our system to the do-
main of algorithmic art generation, where we have used
the framework to code up and test three different repre-
sentations for producing artwork.

Keywords: Automatic program generation, genetic pro-
gramming, evolutionary art.

1 Introduction

Finding an efficient approach for producing artefacts in
a particular creative domain is often more of an art than
a science. Many general artificial intelligence techniques
exist that could potentially be used with varying degrees
of success, but most are so complex that it can be dif-
ficult to tell in advance which will perform better than
others. They are also heavily dependent on the problem
representation used and a number of other parameters that

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

(©2007 Goldsmiths, University of London

Simon Colton
Department of Computing
Imperial College
180 Queen’s Gate
London
SW7 2RH
sgc@doc.ic.ac.uk

can greatly affect their performance. Typically this can be
alleviated by using knowledge of the problem to predict
which search strategies will be most successful. However,
in creative domains the problem may not be well-defined
enough to be an accurate guide.

Our aim is to build a general, pluggable framework
where problems can be expressed using a concise syntax
and tested with all of the different artificial intelligence
techniques written for the system. In this paper, we ad-
dress the problem of how the user specifies a search space
to our system. To cover a wide range of domains and
learning techniques, the representation used must be gen-
eral enough to cover many different data structures, but
not too general as to include invalid solutions in the search
space. To achieve this, we opted for a tree-based struc-
ture, similar to those used in Genetic Programming, with
implicit type rules controlling the shape of the tree and
explicit constraints to disallow particular node patterns.
In later work, we hope to concentrate on evaluating dif-
ferent search strategies and attempting to define classes of
domains for which particular techniques work best.

In section 2 we provide the background to our project
by describing existing genetic programming tools and
some of their applications to creative artefact generation,
against which we compare our approach. In section 3
we provide details of the framework in terms of how we
split the specification of problems into three concise parts,
which enables quick, flexible prototyping of different rep-
resentations. In section 4 we describe how solutions are
generated via an iterative two-stage process that employs
explicit user-given constraints about the nature of the pro-
grams to be generated in order to avoid producing invalid
solutions.

To demonstrate the potential of the framework for pro-
ductive generation of programs, we have implemented an
evolutionary search mechanism where the user acts as a
fitness function (a standard approach), and we have ap-
plied it to algorithmic art generation. Using the concise
problem specification syntax we were able to quickly pro-
totype three different representations for generating pro-
grams that produce artwork when executed, namely colour
based, particle based and image based approaches. Fi-
nally, in sections 6 and 7, we describe the future work
planned for the framework and summarise our conclu-
sions drawn so far.

2 Background

Genetic Programming was first popularised by Koza’s
1992 book (Koza, 1992) as a way to find programs that
optimise a measure of fitness. By manipulating variable-
length parse trees that represent Turing-complete pro-
grams, it is sufficiently general to be able to represent
solutions from many other machine learning techniques
(Banzhaf et al., 1998). Many tools and libraries exist
for using this technique to evolve programs or program
fragments to perform particular tasks, e.g. DGPF (Weise
and Geihs, 2006), the Genetic Programming Engine' and
GALib?. Typically, these allow the user to specify a rep-
resentation containing the ingredients (terminals and non-
terminals®) to be used in the solutions. The user also sup-
plies a fitness function that evaluates each solution, re-
turning a numeric result indicating its suitability for per-
forming the task. To start with, a set of random solutions
are generated using the given representation and these are
then evaluated by the fitness function to determine which
perform better than others. Roughly speaking, the best
performing solutions are then combined with one another
in an attempt to form new solutions that produce a higher
value when evaluated by the fitness function. This process
is then repeated until the required minimum fitness value
is exceeded, at which point the solution with the highest
fitness value is taken as the final solution.

In the pure GP approach, solutions can be constructed
using any combination of terminals and non-terminals
provided in the representation. However, often this results
in solutions being produced that are not valid in the con-
text of the problem. A simple example is a problem that
requires a permutation of values, where any solution that
contains the same value twice would be invalid.

A standard GP approach would still allow such in-
valid solutions to exist, but one remedy to this is to apply
additional constraints to the representation to explicitly
remove certain terminal and non-terminal combinations
from the search space. This then leads to the problem of
constrained solution generation and variation, where the
technique used for producing and altering solutions must
take the constraints into account in order to avoid invalid
solutions.

Several approaches for handling constraints in evolu-
tionary techniques have been tested, with the most no-
table being penalty functions, repair functions and de-
coder functions. Penalty functions (Baeck et al., 1995)
evaluate solutions against each constraint individually and
subtract a value from their fitness for every constraint vi-
olated. Repair functions (as used in Michalewicz and
Nazhiyath (1995)) allow solutions that violate constraints
to be generated, but then modify these solutions in an at-
tempt to find the most similar variant that passes all of
the constraints. Decoder functions (as in Gottlieb and
Raidl (2000)) are employed during the genotype to phe-

'A genetic programming library for the .NET framework
(http://gpe.sourceforge.net/)

A C++ library of genetic algorithm components
(http://lancet.mit.edu/ga/)

>These are described as terminals and functions in Koza
(1992), but we use the term non-terminal here to distinguish
from functions in programs.

notype mapping phase and ensure that the solution geno-
type maps on to a phenotype in which all constraints will
always be satisfied.

Constraint handling is particularly appropriate when
the solution phenotype is a computer program in a high-
level language, since such languages often impose many
complex constraints such as scoping rules and type com-
patibility upon their programs. Strongly Typed Genetic
Programming helps to alleviate some of these problems
by allowing the representation itself to be typed and then
modifying the generation and evolution algorithms to only
produce type-safe trees (Montana, 1995). However, this is
often achieved by tying the GP system to a particular lan-
guage, such that the rules of that language are implicit in
the representation (as in J' GAPY).

Genetic Programming has also previously been used
to evolve programs that produce artefacts from creative
domains such as pictures and music. Machado and Car-
doso’s NEvAr system (Machado and Cardoso, 2002) is a
well-known generator of algorithmic art which evolves an
algorithm for setting the red, green and blue colour com-
ponents of each pixel in an image. Johanson and Poli have
applied a similar technique to music generation (Johanson
and Poli, 1998). Their system produces programs in a cus-
tom language that describes how to play chords and when
to pause between notes. Many other systems also use au-
tomatic program generation to produce creative artefacts,
however a full survey of these is beyond the scope of this

paper.

3 Framework Details

Our aim is to provide a framework that is general enough
to accept problems from a wide range of different do-
mains, yet concise enough to allow for quick prototyping
and easy modification. We have chosen a variable-sized
tree representation to encode solutions, similar to those
used in Genetic Programming, since this is sufficiently
general to also encode representations used in other ma-
chine learning approaches. However, an overly general
representation would include solutions in the search space
that may not be valid solutions to the problem being
solved. Hence, the framework must also allow users to
easily constrain their representations to remove invalid so-
lutions for specific problems.

To allow users to specialise their representations, we
use a combination of node type constraints upon our parse
trees and logical constraints for removing unwanted node
patterns. The former is based upon the constraints of
Montana’s Strongly Typed Genetic Programming system
(Montana, 1995) and allows the type systems of program-
ming languages to be respected. Meanwhile, the latter
allows for constraints over node dependencies to be ex-
pressed. This can, for instance, be used to enforce that
instances of two node types may only exist together and
not independently. We have found this to be particularly
useful for expressing relationships between function calls
and function declarations when evolving programs.

Finally, we also provide a method for translating the

“An open-source, Java-based genetic algorithms package
(http://jgap.sourceforge.net)

tree structure used internally to represent solutions into
text output, which is analogous to the genotype-phenotype
mapping in Genetic Programming. In our experiments, we
use this to convert our solutions into programs, scripts or
data that can be accepted by other programs. We then use
the behaviour of these programs to evaluate the success of
the solution.

To keep the roles of specifying the representation, im-
posing constraints and compiling solutions to text sepa-
rate, users provide each of these to our system in a sep-
arate file. The following subsections explain how these
files work in further detail.

3.1 Representation File

Solutions in our current system are represented by trees
whose structure is specified by the user in the representa-
tion file. At a basic level, this file allows the non-terminal
and terminal node types of the tree to be specified, in a
similar way to most other Genetic Programming systems.
However, these node types are also involved in typing
constraints that allow the structure of the trees to be con-
trolled.

These typing constraints allow the terminals and non-
terminals of the representation to exist in an inheritance
hierarchy, such that groups of node types that are seman-
tically linked (e.g. True, False, And, Or) can inherit
from a common node supertype (e.g. Boolean) that rep-
resents this link. Each non-terminal node type then speci-
fies which arcs it has to each of its child nodes, and also in-
herits any arcs declared in its supertypes. Each arc is also
annotated with node types that restrict the nodes that can
be children of it. An arc annotated with a node type X will
only accept child nodes that are instances of the X type or
any types that inherit from X. Additional features such as
abstract node types, primitive types and multi-child arcs
are also supported but there is insufficient space here to
describe them in detail.

The following shows an example of the syntax used to
specify a representation for simple numeric expressions.

representation NumericExpressions {
abstract type NumericExpression;

type Zero NumericExpression;
type One NumericExpression;
type Two NumericExpression;

abstract type BinaryOperator
NumericExpression {
NumericExpression left;
NumericExpression right;

i

type Add BinaryOperator;
type Sub BinaryOperator;
type Mul BinaryOperator;
type Div BinaryOperator;

bi

3.2 Constraints File

In addition to the implicit typing constraints provided in
the representation file, the user can also specify explicit
constraints upon the solution trees in the constraints file.

Since the system is not tailored to output in a specific lan-
guage, this file can be used to add constraints that are spe-
cific to the output language for this particular problem. It
can also be used to add domain-specific constraints, which
in the case of program generation could remove a large
proportion of non-compiling and invalid solutions from
the search space.

Constraints are currently expressed in a syntax that is
based upon first-order logic, but is tailored to expressing
conditions about tree structures. The language includes
and, or and not operators, which follow their traditional
logical semantics, as well as exists and all operators
that have special meanings. In particular, they only match
nodes at or within a particular part of the tree, and they can
optionally bind these matches to variables that are then
used in the evaluation of their sub-expressions.

The following shows how this syntax can be used to
express the constraint that Div nodes cannot have Zero
nodes for their right children in the representation from
Section 3.1.

constraint NoDivideByZero {
all Div in root as divideNode (
not (
exists Zero at
divideNode.right

)
}i

3.3 Compiler File

Once a solution tree has been generated, the compiler file
is consulted for the transformations required to convert the
tree into the specified output language. The user provides
these transformations as string templates for each node
type which describe how nodes of that type should be rep-
resented in the output. The string templates are specified
in the Velocity templating language®, so that references
to the compiled output of child nodes are represented by
enclosing the child name between ${ and } delimiters.
This also allows the templates to include control flow con-
structs like for loops over node children.

The following gives the compiler code for translating
the numeric expression representation from Section 3.1
into C-style expression syntax.

compile Zero [|0]];
compile One (111715
compile Two [|2]];
compile Add [| (${left})+(S{right})|];
compile Sub [|(S{left})-(S{right})I|];
compile Mul [l (${left}) (S{right}) |];
compile Div [|(${left})/(${right})|];

4 Constraint Handling

In section 2 we highlighted three existing methods for
handling constraints in evolution-based systems; penalty
functions, repair functions and decoder functions. For our

SAn open-source, Java-based string template language
(http://velocity.apache.org/)

system, we have tried a new approach to constraint han-
dling, in which information concerning the constraints is
used to guide the initial process of solution generation,
then constraint-aware variation operators are used to pro-
duce only valid children.

To guide the generation and variation operators, we
use an approach that attempts to determine whether the
tree being modified violates the constraints either directly
or indirectly. A direct violation is where the nodes in the
tree contradict at least one of the constraint conditions,
whereas an indirect violation is where a partial tree® re-
stricts the possible nodes that can be placed to only those
that will contradict at least one of the constraint condi-
tions. To make this problem tractable, the constraint lan-
guage was restricted to only a small number of operators,
which allowed us to hard-code a number of routines that
were able to reason about the constraints at the sacrifice of
losing Turing-completeness of the language. The follow-
ing subsections cover the algorithms used for guiding the
generation and variation of trees in further detail.

4.1 Solution Generation

Solutions are generated using an iterative two-stage pro-
cess of checking which possible valid node instantiations
can be made and then choosing one based on knowledge
of previous good solutions. To start with, the generator
component takes a partial tree as input, so to generate a
tree from scratch a root node must first be instantiated and
passed to the generator. As the first step, the generator sets
all unset arcs to point to placeholder nodes and then adds
all possible combinations of placeholder nodes and their
type-compatible node types to a list of possible choices
that can be made. The generation process then proceeds
as follows:

e The tree constraints are evaluated with respect to the
nodes currently in the tree to produce the constraints
that must be satisfied by the remaining nodes to be
added.

e Each of the possible choices is checked against the
constraints and is removed if they would directly or
indirectly violate them.

e If there is a placeholder for which there are no re-
maining possible choices, the algorithm backtracks.

e Otherwise, one of the choices is picked at random, its
node type is instantiated and its corresponding place-
holder is replaced with the new node instance. All
alternative choices for that placeholder are then re-
moved from the list of possible choices. All children
of the new node are set to placeholder nodes and all
combinations of the new placeholders and their type-
compatible node types are added to the list of possi-
ble choices to be made.

e If there are no placeholders in the tree, the algorithm
terminates, otherwise it repeats from step one.

8 A partial solution tree is a tree where some branches end in
non-terminal nodes rather than terminal nodes, and so some arcs
have yet to be assigned child nodes.

4.2 Solution Improvement

Currently, we use minor variations on traditional GP tech-
niques of crossover and mutation to produce new solutions
from previous ones, with the initial population generated
using the above algorithm of constrained random genera-
tion.

For crossover between two trees, 17 and 15, we ran-
domly select a node N7 from the first tree which deter-
mines its crossover point, but then we filter the nodes
in the second tree by those that would form a type-
compatible tree when interchanged with N;. A node N,
is then randomly chosen from this filtered list and the sub-
tree rooted at N7 in T} is swapped with the subtree rooted
at Ny in T5. The tree constraints are then checked and,
if violated, the swap is undone and N, is removed from
the list of filtered nodes and another node is chosen. If
no valid replacement node for N; can be found, a new
crossover point is chosen in 77. Mutation of a single tree
is handled by randomly selecting a node Nj, removing
the subtree rooted at [V; and then passing the tree to the
generator to fill in the gap.

4.3 Violation Detection

In this approach, the ability to reason about the constraints
in order to predict which choices would directly or in-
directly violate them has a large influence on the per-
formance of the system. Currently, we preprocess both
the constraints and the representation in order to build up
the following meta-information that can be queried by the
system in order to detect whether a violation has occurred:

o The Must Type Set of a node type contains itself and
all of its supertypes.

e The Transitive Must Type Set of a node type is de-
fined as the set of node types that must appear in a
subtree rooted at a node of the given type.

e The May Type Set of a node type contains itself, all
of its supertypes and all of its non-abstract subtypes.

o The Transitive May Type Set of a node type is defined
as the set of possible node types and supertypes that
can appear in a subtree rooted at a node of the given

type.

o The Shortest Terminal Length of a node type is the
minimum number of arcs that must be traversed from
nodes of that type before a terminal node is reached.

A fixed set of rules are then used to determine
whether a violation has occurred. These rules con-
tain a pattern part that is matched against parts of
the constraints and a condition part that, based on the
current tree and the results of queries over the meta-
data, returns whether or not the constraint can be sat-
isfied. For example, one rule looks for constraints of
the form exists NodeType in Subtree, where
NodeType and Subtree are variables, and will then
check whether NodeType is within the May Type Set of
any placeholder nodes within Subtree. If it is not, then
this rule has successfully determined that the constraint

can never be satisfied by any complete trees built upon the
current partial tree.

4.4 Evaluation

So far, we have tested our constraint handling approach
on a number of small examples from very simple con-
straints, such as asserting that a certain node type must ap-
pear in all solutions, to complex ones based on node type
co-dependency. Although we do not have enough results
to produce a full quantitative analysis of the approach, we
have noticed good performance in the face of complex
constraints where the space of valid solutions is sparse.
Unfortunately, this is often hidden by poorer performance
when faced with simple constraints (due to the overhead
of the system) or combinations of constraints that are not
covered by our reasoning rules. This is partly because,
when faced with a problem for which no rules exist, our
system degenerates to an exhaustive search of the solution
space, which can result in repeatedly taking paths that lead
to dead ends.

However, one advantage that our system may have
over penalty-based approaches (which we intend to check
empirically) is that the destructive effect of mutation and
crossover is reduced by guaranteeing that offspring will
always be valid solutions. Such destructive effects (when
children have lower fitness than their parents) can lead to
introns and bloat in members of the population, which can
hamper the evolutionary process (Soule and Foster, 1997).

S Application to Algorithmic Art

To test our system, we prototyped three different problem
specifications for generating different types of algorithmic
art. The three types that we focused on were:

e Colour-based artwork, where the algorithm used to
set the colour of each pixel in the picture is evolved,
in a similar vein to NEvAr (Machado and Cardoso,
2002).

e Particle-based artwork, where the algorithm used
to set the position and colour of 1000 particles is
evolved and the particle trails are plotted over 100
time steps.

e Image-based artwork, where the algorithm used to
set the colour of each pixel in an image can also use
colour values from a source image.

A different problem specification was written for each
of the above types, but each one outputs code in a lan-
guage based on Processing’, a scripting language used
by graphic artists that is tailored to providing high-level
drawing operations. These scripts were then executed to
produce the resulting images.

5.1 Colour-Based Artwork

In this representation, the resulting programs loop over
all pixels in the output image and set their hue, satura-
tion and value based on some algorithm. The part of the

’See http://www.processing.org

program that loops over all the pixels is constant between
solutions, however the algorithms used to set the hue, sat-
uration and value of each pixel can vary. To allow for
this, the representation has node types for constructing
floating-point expressions which include constants (within
the range 0.0 to 1.0 inclusive), simple mathematical func-
tions (add, subtract, multiply, divide, sin, cosine and ran-
dom) and variables (the x and y position, expressed as
screen proportions).

Since the representation is quite restricted, the type
system in the representation is enough to ensure that all
produced solutions compile. However, there are still a
number of compiling solutions that we want to rule out,
such as those that cause errors at runtime or produce pic-
tures that we know will be judged badly. To remove these
from the search space, we added the following constraints
to the constraints file:

e There must be a variable somewhere in the solution
tree, where a variable is a reference to the x or y po-
sition in the image or a call to random. All solutions
that do not contain variables will always produce im-
ages in which all pixels have the same colour.

e No constant representing the number one must ever
appear as an operand of a multiply expression. Any
solution that contains this combination could be sim-
plified and so is redundant.

o All functions must contain at least one variable as
one of their operators. This avoids constant sub-
expressions that may create values outside of the de-
sired range or may be more simply expressed as a
single constant.

The compiler file then specifies the mapping between
the node types and the corresponding scripting code that
draws the image. All of the numerical expression node
types map to their expected operators, function calls or
variable names, while the root type maps to the code that
loops over the image and uses the generated expressions
to set the hue, saturation and colour components of each
pixel as shown below:

compile Main {
|int width = 500;
|int height = 500;
|public void setup () {
| size (width, height);
background (
hsv(0.0f, 0.0f, 0.0f)
)
for (float y=0; y<1;
y+=1/(float)height) {
for (float x=0; x<1;
x+=1/ (float)width) {
float h = ${hue};
float s S${saturation};
float v = ${value};
pixel(x, y, hsv(h, s, Vv));

Overall, the colour-based artwork problem specifica-
tion consists of 130 lines of text spread across these three
files which describes 29 node types, 5 constraints and 24
compiler rules. With this, we could generate, crossover
and mutate solutions using the algorithms described in
Section 4.1 and 4.2 and then compile and execute the re-
sulting scripts and inspect the images generated. In figure
1, we present some example images generated using this
representation.

5.2 Particle-Based Artwork

The second representation to be tested used a simple parti-
cle simulation as a basis for producing artwork. The gen-
erated part of the solution is the algorithm used to control
the position and colour of 1000 particles over time. The
static part of the solution creates the 1000 particles and
then plots their trails over 100 time steps. In addition to
this, a convolution is applied to the resulting image after
each time step, the kernel of which can also vary. This has
the result that lines drawn in early time steps will often ap-
pear more blurred than those drawn in later time steps, so
that an impression of how the simulation has progressed
over time can be seen in the resulting image.

The representation used here was very close to the
colour-based representation, except with the variables
now tracking the position, colour, previous position, time
and index of each particle. Where the colour-based rep-
resentation only evolved three numerical expressions, this
representation evolves 12; six to initialise the position and
colour of every particle and six more to update the position
and colour of every particle in every time step, in addition
to three constants that control the background colour of
the image.

The constraints upon the representation are also more
complex than those for the colour-based artwork, mainly
due to the additional variables that are only in scope for
particular parts of the program. For example, it makes
no sense to reference the time step number or a particle’s
previous position in its initialisation expressions, so these
are explicitly disallowed in the constraints.

Overall, the particle-based artwork problem specifica-
tion consists of 238 lines of text which describes 44 node
types, 6 constraints and 38 compiler rules. In figure 2, we
present some example images generated using this repre-
sentation.

5.3 Image-Based Artwork

The third representation to be tested used an existing im-
age as input and could query this image for its hue, satu-
ration and value components at any point, then use these
values in numerical expressions for setting the colour of
each pixel in the output image. This allowed it to pro-
duce image-filter style images by setting the output pixel
colours to some function of the source pixel colours. It
could also produce warps of the source image by assign-
ing the output pixels to pixels at different positions in the
source image based on some numeric function. Finally, it
could also evolve the kernel of a convolution filter to be
applied as a post-processing step. The result of this is that
a range of images are produced, some of which obviously

contain the source image filtered in some way, and others
which merely use it as a source of semi-random values.

The constraints for this representation were very simi-
lar to those of the colour-based representation, except that
additional constraints were added to force all solutions
to use the source image colours somewhere in its com-
putation of the output image colours. This ensured that
the search space of this representation did not include the
search space of the colour-based representation as a sub-
set.

Overall, the image-based artwork problem specifica-
tion consists of 171 lines of text which describes 34 node
types, 6 constraints and 28 compiler rules. In figure 3, we
present some example images generated using this rep-
resentation along with the source image used to produce
them.

6 Future Work

In section 5, we used the domain of algorithmic art to test
the usage of our framework for creative artefact genera-
tion, where we were able to use simple problem specifi-
cations to produce artworks of a similar nature to those
produced with bespoke systems. However, many of the
design decisions made during the development of our sys-
tem have been motivated by our interest in scaling it up to
handle much more complex problems efficiently. We are
currently using the system in domains such as interactive
art and the generation of simple computer games and have
plans for 3D model and landscape generation.

Early results from these domains show that the evalu-
ation of solutions is much more time-consuming than that
of the algorithmic art shown here. For interactive domains
in particular, the user must often try various input combi-
nations in order to test for a response. We therefore be-
lieve that it is important for the system to extract more in-
formation from each evaluation. One way to achieve this
is to allow the user to drill down into each solution in or-
der to target the specific parts that are performing poorly.
The system could then refine these parts separately until
they meet the user’s satisfaction, when they could be re-
combined with the rest of the solution.

We also intend to investigate general ways of allow-
ing our system to refine solutions semi-autonomously in
order to reduce the number of evaluations performed by
the user. This could be done by allowing users to specify
their preferences to the system as a fitness function over
the phenotype, or a machine learning approach could be
used to learn their preferences from the initial evaluations
made during each session. By using a logic-based learn-
ing method such as Inductive Logic Programming (Mug-
gleton, 1991), this opens up the possibility of the user un-
derstanding and altering the learned fitness function.

Finally, we acknowledge the that evaluation of sys-
tems and the artefacts they produce is an essential as-
pect of computational creativity which is missing from the
work presented here and we aim to fill this gap. We are
already planning a number of studies for assessing both
the usability of our system and the appeal of the artefacts
that it produces. We are also looking into ways to quanti-
tatively evaluate parts of our system where possible.

7 Conclusions

We have presented the first description of our generic
framework for automated program generation, and
demonstrated its usage in an evolutionary art setting. We
have found that bringing constraint checking into the so-
lution generation process can help weed out systemati-
cally poor solutions and produce solutions faster than tra-
ditional generate-and-test approaches. As we saw with the
application to three separate art generation problems, our
framework enables rapid development of program genera-
tion systems. This has helped us to quickly prototype, test
and refine various representations for different program
generation problems.

Our current implementation is lacking in a number of
areas that prevent us from applying it to solve more com-
plex problems. Although the use of constraints helps to
rule out many bad solutions, we will need to supplement
this with more sophisticated constraints and a flexible fit-
ness calculation mechanism. This is because, for more
complex representations, we’ve found our existing con-
straint language is insufficient for ruling out enough bad
solutions to enable convergence on good solutions within
a reasonable time. However, this work is ongoing, and we
expect to find a number of ways to address these issues
in order to allow us to test the system on a wide range of
different domains.

Acknowledgements

We would like to thank the anonymous reviewers for their
comments which have helped us to improve this paper.

References

Baeck, T., Fogel, D., and Michalewicz, Z. (1995). Penalty
functions. Handbook of Evolutionary Computation.

Banzhaf, W., Nordin, P, Keller, R. E., and Francone, F. D.
(1998). Genetic Programming: An Introduction.

Gottlieb, J. and Raidl, G. R. (2000). The effects of locality
on the dynamics of decoder-based evolutionary search.
In Proc. of the Genetic and Evolutionary Computation
Conference 2000, pages 283-290.

Johanson, B. and Poli, R. (1998). GP-music: An interac-
tive genetic programming system for music generation
with automated fitness raters. In Genetic Programming
1998: Proc. of the 3rd Annual Conference, pages 181—
186.

Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.

Machado, P. and Cardoso, A. (2002). All the truth about
NEvVAr. Applied Intelligence, 16:101-118.

Michalewicz, Z. and Nazhiyath, G. (1995). Genocop iii:
A co-evolutionary algorithm for numerical optimiza-
tion problems with nonlinear constraints. In Proc. of
the 2nd IEEE International Conference on Evolution-
ary Computation, pages 647-651.

Montana, D. J. (1995). Strongly typed genetic program-
ming. Journal of Evolutionary Computation, 3:199—
230.

Muggleton, S. (1991). Inductive Logic Programming.
New Generation Computing, 8(4):295-318.

Soule, T. and Foster, J. A. (1997). Code size and depth
flows in genetic programming. In Proc. of the 2nd An-
nual Conference on Genetic Programming, pages 313—
320.

Weise, T. and Geihs, K. (2006). DGPF - an adaptable
framework for distributed multi-objective search algo-
rithms applied to the genetic programming of sensor
networks. In Proc. of the 2nd International Conference
on Bioinspired Optimization Methods and their Appli-
cation, BIOMA 2006, pages 157-166.

Figure 1: Evolved images - colour-based approach

Figure 2: Evolved images - particle-based approach Figure 3: Original and evolved images - image-based ap-
proach

