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Abstract. Image filtering involves taking a digital image and producing
a new image from it. In software packages such as Adobe’s Photoshop,
image filters are used to produce artistic versions of original images. Such
software usually includes hundreds of different image filtering algorithms,
each with many fine-tuneable parameters. While this freedom of explo-
ration may be liberating to artists and designers, it can be daunting for
less experienced users. Photoshop provides image filter browsing technol-
ogy, but does not yet enable the construction of a filter which produces
a reasonable approximation of a given filtered image from a given orig-
inal image. We investigate here whether it is possible to automatically
evolve an image filter to approximate a target filter, given only an origi-
nal image and a filtered version of the original. We describe a tree based
representation for filters, the fitness functions and search techniques we
employed, and we present the results of experimentation with various
search setups. We demonstrate the feasibility of evolving image filters
and suggest new ways to improve the process.

1 Introduction

Image filtering is the process whereby a digital image is taken as input and a
new image is produced, usually via a mathematical transformation of the bitmap
information in the original image. Such image filtering finds application in nu-
merous areas, including machine vision, medical imaging [1], graphic design and
the visual arts. In the latter two cases, sophisticated software packages such as
Adobe’s Photoshop are employed to produce artistic versions of images, usually
via a chain of image filter applications. Such software often includes hundreds
of different image filtering algorithms, with each having many parameters to
explore the space of filters available. While this freedom of exploration may be
liberating to artists and designers, the plethora of opportunities for less experi-
enced users may be daunting. While Photoshop provides image filter browsing
technology, it does not yet enable image filter search, i.e,. retrieving a filter given
an example of an image produced by it, nor can it construct a filter from scratch
to approximate a target image filter. We investigate here whether it is possible
to automatically evolve an image filter to approximate such a target filter, given
only an original image and a filtered version of that original.

We look here at the general question of evolving a filter to approximate a
given target filter. As described in section 2, we have developed a fairly expres-
sive tree-based representation of image filters, and we have built a library of



Fig. 1. Example image filter tree consisting of transforms in blue circles: A=Add
Colour, C=Convolution, I=Inverse, M=Median and T=Threshold; and compositors
in red squares: A=And, F=Fade, M=Min and O=Or. Image inputs are in green dia-
monds. An example original image and the filtered version are shown.

1000 image filters in this representation. As described in section 3, filters rep-
resented in this way are amenable to crossover and mutation, and hence admit
an evolutionary search. As described in section 4, we experiment with two ways
in which to seed an initial population, namely by retrieving filters from the li-
brary, as per [9], and by random generation. We also experiment with four fitness
functions, and discuss the visual differences between the types of filters that are
evolved using them. Working with 75 image filters, 46 of which are from Photo-
shop, and 29 from our library, we show that, while it is difficult, automatically
evolving suitable approximations to filters is feasible, but there is much room for
improvement. We conclude by describing some of the planned improvements.

2 Representing Image Filters

We represent image filters as a tree of fundamental (unary) image transforms
such as inverse, lookup, threshold, colour addition, median, etc., and (binary)
image compositors such as add, and, divide, max, min, multiply, or, subtract,
xor, etc. As an example, the Median transform takes two parameters, the first of
which determines the way in which the median RGB values of each pixel is calcu-
lated, and the second of which determines the extent of the neighbourhood that
is taken into account when the median is calculated. As an example compositor,
the And compositor takes two images and calculates the and logical value of the
pair of bitmap RGB values at each coordinate in the image. An example tree is
provided in figure 1, where the overall filter uses seven transform steps and six
compositor steps, and the original image is input to the tree seven times.

As described in subsection 3.2 below, image filters can be generated randomly.
Each time an image filter generated in this random way produced an interesting
visual effect on one or more original images, it was added to a library of filters,
until we had built up 1000 such filters, categorised into 30 sets of filters, roughly
according to how the filtered images look, e.g., there are categories for filters
which are blurred, grainy, monotone, etc. The time taken to apply a filter is
roughly proportional to the size of the input image multiplied by the size of the
tree. Over the entire library of filters, the average number of nodes in a tree is



Fig. 2. Ten filters applied to the original image from figure 1

13.62, and the average time' to apply a filter to an image of dimension 256 by
384 pixels (the size of images in the standard Corel library) is 410 milliseconds.
To give an indication of the visual variety achievable by the filters in the library,
in figure 2, we provide 10 filtered versions of the original image from figure 1.

3 Evolving Filters

We are addressing the following problem: given an image I and a target filtered
version of I, which we denote T}, construct a filter F' such that the filtered
image, F7, gained from applying F to I approximates 717, to a good standard, as
evaluated by a given fitness function. In order to describe these techniques, we
first discuss the fitness functions we used, followed by how we randomly generate,
crossover and mutate filter trees.

3.1 Fitness Functions

As with most evolutionary search applications, correctly measuring the fitness
of individuals is key to success. In our case, the fitness function will be used
to order individual image filters in terms of how close their output is to the
target filter’s output when applied to a given original image. We envisage (at
least) the following two reasons to evolve image filters. In the first scenario, a
user has found an example of a filtered image and wants to construct a filter
to approximate it as closely as possible. In the second scenario, a user has an
original image and has found a filtered version of it that pleases them, but would
like to see similar variations on the theme.
To model the former case, we use the following fitness function:

1_ <Z1gz§w Z1gy§h (dist(Ti(z,y), Fr(x, y)))

w* h

where w and h are the width and height of the images being produced respec-
tively, and dist(Ty(x,y), Fr(z,y)) is the Euclidean distance in RGB-space be-
tween the pixel at point (z,y) in the target filtered image and the corresponding

! On a MacOS X machine running at 2.6Ghz.



pixel in the image output by the filter being evaluated. Hence, if a filter achieves
a score of 1, it perfectly reproduces the target filtered image at the bitmap level.

In the latter case, recreating exact pixel values is less important than gaining
an overall visual style in the evolved filters. For this reason, we use two common
features of an image, namely its colour distribution, and how grainy it is (i.e.,
the level of contrast in the image). We use the following weighted sum of these
two features as a fitness function:

wg * (1 —[g(T7) — g(Fr)|) + we * (1 — diff (hist(Tr), hist(Fr)))

where g(X) approximates the contrast? present in an image by measuring the
average Fuclidean distance in RGB-space of a pixel from its neighbours in im-
age X and diff (hist(Tr), hist(Fr)) denotes the difference between the colour
histograms of the target and evolved filtered images. This is measured by cal-
culating the average of the difference over all the bins in a 4 by 4 by 4 colour
histogram for both images. As we see in section 4, we experimented with three
different pairs of weights (wg,w,.) for the weighted sum.

3.2 Random Generation of Filter Trees

Filter trees can be randomly generated by starting with an input image node (a
diamond-shaped node in figure 1), and iteratively choosing to replace an input
image node with a transform node or a compositor node. If the node is replaced
by a transform, then a single input image node is added to the tree above it, and
similarly, if a node is replaced by a compositor, a pair of input nodes are added
to the tree above it (as input to it). Each time a new node is generated, random
parameters for that node are generated, with the parameters being within a suit-
able range of values. There are various ways in which we can control the random
generation, including limiting the number of transforms/compositors/nodes and
the longest branch in the tree, and controlling the likelihood of each particular
transform/compositor being chosen as a node in the tree.

3.3 Crossover and Mutation

Representing image filters as trees enables both the crossing over of branches
into offspring from each of two parents, and the mutation of trees, thus enabling
an evolutionary approach to filter construction. To perform crossover, we start
with two parent trees (called the top and bottom parent), and we choose a pair
of nodes: N; on the top parent and N, on the bottom parent. These are chosen
randomly so that the size of the tree above and including N, added to the
size of the tree gained from removing the tree above and including N, from
the bottom parent is between a user-specified minimum and maximum. After
50 failed attempts to choose such a pair of nodes, the two trees are deemed

2 We acknowledge that there are other methods for measuring the contrast in an
image, in particular by taking the second order derivative of its colour histogram.
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Fig. 3. An example of the crossover operation. We see that the child image inherits
the colours from both parents and the texture from the top parent.

incompatible, and a new couple is chosen. If they are compatible, however, the
tree above and including N, is substituted for the tree above and including NV,
to produce the offspring. An example crossover operation is shown in figure 3.

We have implemented three techniques for mutating the offspring trees.
Firstly, each node in a tree will be parameterised by a set of values, and the
low-mutate mutation method looks at each parameter of each node and, with
a probability of P, generates a new set of parameters for the node. Secondly,
the mid-mutate mutation method looks at each node in the tree, and with a
probability of P,,, chooses to replace that node by a suitable alternative (i.e.,
transforms are replaced by transforms and compositors are replaced by compos-
itors). Finally, the high-mutate mutation method looks at each node in the tree
and with a probability of P}, replaces the tree above and including the node with
a randomly generated sub-tree (as per the random generation method described
above, and subject to the same restrictions as for entire filter trees).

4 Experiments and Results

Our ambition here is modest: we wish to show that evolutionary search for image
filters converges on solutions which have some visual similarity with the target
filter. We have only experimented with a very small subset of the parameters used
in automating the evolution of image filters, and we discuss further experiments
that we plan to undertake in section 6.

4.1 Reducing Image Size

As previously mentioned, the time taken to perform a filter is proportional to
both the image size and the size of the filter. Hence, since in initial studies we
saw no discernable difference in the quality of the filters produced using reduced
images, we experimented with reducing the size of the original (unfiltered) image
in order to increase the efficiency of the evolutionary process. Reducing the size
of the image to be filtered is not detrimental to an evolutionary search if the
ordering of individuals in terms of the fitness function does not change too much.
To determine an appropriate scaling, we used the first fitness function described
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Fig. 4. First graph: percentage of correct fitness comparisons at various scales (from
250 tests). Second graph: average time taken to perform a single image filter and
evaluation operation.

above, namely the average Euclidean distance of pixels in RGB-space. Scaling
the original image at scales of 0.1,0.2,...,1.0, in each case, we tested 250 sets of
three filters f1, fo and f3 randomly chosen from our library of 1000 filters. For
each triple, using f; as the target filter, we measured the fitness of fy in terms
of its approximation of f; and the fitness of f3 in the same terms. We repeated
this for the scaled images, and recorded a hit if the same filter (from f; and
f2) was determined to be fittest in the scaled case as in the unscaled case. We
also recorded the average time taken to perform a single filtering operation and
fitness evaluation. The percentage hit rates and the average times are shown in
figure 4. Note that these tests were performed with an original image of size
256 by 384 pixels on a Mac OS X 2.6Ghz. Looking for a balance between gain
in efficiency and fidelity of fitness comparison, we chose to reduce our original
image to 0.3 times its size in all subsequent experiments. This gives a 43.5%
increase in efficiency for only a 7% loss in the fidelity of fitness comparisons.

4.2 Search Setups

We have barely scratched the surface of possibilities for the evolutionary search
for image filters — indeed, our search setups are rather simplistic at the moment.
Common to all the search setups are the following aspects: we used a population
size of 100 and evolved for at most 100 generations. Moreover, the search was
set to terminate if there was no improvement in the fittest individual or the
average fitness over the population for five generations in a row. Note that in
all but a handful of the 375 sessions we ran, the search terminated before the
full 100 generations were exhausted. We used a simple selection method: the top
25% of filters were put into an intermediate population, from which pairs were
chosen randomly and a single offspring produced if possible. Compensating for
discarding 75% of each population, to increase diversity, new filters were only
allowed into the next population if the image they produced differed in at least
5% of its pixels with the images produced by all the filters which were already
added. We found that in most cases, this measure was enough to avoid premature
convergence of the search. Offspring filters were required to have between 3 and



20 nodes in their trees, and we imposed a mutation rate of 0.1 for each node in
the offspring tree, using the mid-mutate technique only. We experimented with
five search setups, which differed as follows:

® Setup 1: Random generation of the initial population, with a random tree size
limit of 20 nodes. Fitness function: Euclidean RGB-distance.

® Setup 2: As setup 1, except the initial population is generated by searching
through our library of 1000 filters using methods described in [9] to find the
closest matching filters. Naturally, when the target filters were themselves from
the library, we did not allow them to be retrieved into the initial population.

® Setups 3, 4 and 5: As setup 1, but with weighted histogram /contrast fitness
described in §3.1 with weights (1, 0), (0.75,0.25), (0.25,0.75), respectively.

We experimented with 75 image filters, namely the 46 filters which come with
the standard Photoshop distribution, using the default settings, and 29 from
our library of 1000 filters, chosen to cover a wide range of visual styles. The
fitness of best individual seen in any population, averaged over all filters (both
from our library and from Photoshop), for search setups 1, 2, 3, 4 and 5 was
0.92, 0.92, 0.94, 0.94 and 0.97, respectively. For all the search setups, it was
possible to evolve filters with fitness scores greater than 0.9 on average, which is
encouraging. However, this belies the fact that filters can be evolved to maximise
the fitness functions without necessarily producing images which look like the
target filter — see the next subsection for examples. We also note that choosing to
generate filters randomly, or choosing them from our library produces very little
difference in terms of the fitness of the best evolved filter. On inspection of the
data, we found that — in general — the initial populations for setup 2 score worse
than for setup 1, but the subsequent populations catch up fairly quickly. We
also see that it is easier to evolve filters which maximise the histogram /contrast
fitness function than the RGB-distance fitness function. The production of a new
population takes around 73 seconds (on 2.6Ghz machine). Over the 375 sessions,
the shortest/average/longest sessions produced 11/31/100 populations, taking
13 minutes, 37 minutes and approximately 2 hours respectively.

4.3 Illustrative Examples

In figure 5, we present 18 illustrative examples of the best (in terms of the
appropriate fitness function) evolved filters, with 9 where our library provided
the target filter and 9 where it was provided by Photoshop. We have tended
to show the better results, but we include the approximations of the embossed7
filter as an example where none of the search setups produced a visually similar
or appealing filter. This example indicates a phenomena we saw fairly often,
namely filters evolving to produce single colour filters (which minimises the RGB-
distance on average when the target filter produces images dominated by one
colour). Another phenomena we saw fairly often was the evolving of filters which
produce rather greyscale images when the target filter actually produces quite
colourful images. Again, this can be explained, as greyscale images have pixels
which are not at extremes in the RGB-space, hence they tend to maximise fitness.



target  setup 1 2 3 4 5 target setup 1

lges

bitone4
accented_ed

colourfull4 bright2
chrome

diffuse_glow

embossed7
film_grain

faded
neon_glow  glowing_edges

modern12

paint_daubs

photocopy

stamp

watercolour2 psychodelicl3  painterly28

Fig. 5. Illustrative examples of the best filters evolved for each search setup. First
column: target filters from our library. Second column: target filters from Photoshop.

Such a greyscale image was produced with search setup 2 for the moderni?2 filter
and to a lesser extend with setup 3 for colourfull. We describe some ways in
which to combat this phenomena in section 6. Note, however, that when using
the RGB-distance fitness function, colourful filters can be evolved for colourful
target filters, as evidenced in searches 1 and 2 for the psychodelic13 filter.
Some highlights (judged entirely subjectively by ourselves) include: (a) the
near perfect re-creation of the bitones3, bright2, colourfull/ and psychodelicl3
filters (and also the grey! and wvividl target filters, not shown in figure 5) (b)
the fairly good approximation of some Photoshop filters, including the charcoal,
dark strokes, diffuse glow, film grain, glowing edges, neon glow, patchwork and
stamp target filters. Also, many filters found using the histogram //contrast fitness
function were not exact matches, but had a similar visual style to their targets,
e.g., the filter developed using setup 5 for fadej captures its style well; the filter
generated by setup 2 to approximate painterly28 has a particularly painterly



style, and while the approximation to the Photoshop chrome filter produced by
setup 5 is a bad approximation, it does capture some of its essence. On the whole,
the evolution performs better for our library filters than for the Photoshop filters.
This is largely due to the Photoshop filters being rather subtle, i.e., they alter
the image very little. In these cases, an identity filter scores highly for all the
fitness functions, and so the search tends to discover ways in which to construct
trees which do nothing. However, there are some exceptions: e.g.,, the accented
edges filter is very subtle, but setups 1 and 4 found good approximations.

5 Related Work

The NEvAr system [3] is an evolutionary art tool which uses a similar tree-based
representation for image filters but is different in that the system described here
(1) explicitly uses an initial existing image as a seed for evolution, (2) uses tree
nodes which correspond to high-level transformations of the input images, (3)
uses a target image as a fitness function. A general approach for evolving image
filters tree was introduced by Sims [7] and although complex image transforma-
tion were allowed at node level, it still differs from the work present here on
aspects (1) and (3) above. In [4], which is conceptually close to the approach
described here, the authors use Genetic Programming to evolve programs that
give colour to greyscale images based on existing coloured training images. Par-
ticular applications of image filter evolution include evolving noise removal filters
for graphics processor units using Cartesian genetic programming [2] and an im-
plicit context representation [8], and evolving simple filters such as the salt and
pepper filter for Field Programmable Gate Arrays [6].

6 Conclusions and Future Work

Using a tree-based representation of image filters, we have investigated how to
evolve approximations of a target filter, by referring to an image produced by the
target filter when calculating the fitness of individuals in a population. We have
experimented with five search setups which use four fitness functions, and we
have shown that in some cases we can evolve filters which very closely approx-
imate the target, and in other cases, we can evolve filters which have a similar
visual style to the target. On inspection, 17 of the 46 Photoshop filters (37%)
were approximated in an appropriate way by at least one of the search setups,
and 21 of the 29 filters from our library (72%) were adequately approximated.
While this is encouraging, there is certainly room for improvement.

In future work, we hope to find more effective search setups, by experiment-
ing with more sophisticated selection techniques, as well as parameters such as
the population size, mutation rate, mutation style, and different methods for
tree-based crossover [5]. We also plan to experiment with different fitness func-
tions, to address some of the limitations identified here. In particular, searches
can converge on identity filters, filters which produce single-colour images and



greyscale images (for colourful target filters). To address this, we plan to exper-
iment with fitness functions which look at the mapping from the original to the
filtered image that the filter produces. In particular, we will use a sliding scale
of importance for pixels: those which are not altered at all by the target filter
will be ignored by the fitness function, while those which are altered a great deal
will be used prominently. We will also consider different numbers of generations
of consecutive identical fitness as a terminating criterion for evolution. We hope
that such a fitness function will also enable the evolution of filters which approx-
imate the more subtle Photoshop filters, where most of the pixels remain the
same. Finally, given the lack of perceptual uniformity in RGB space, we plan to
carry out the same set of experiments for different colour spaces, e.g. HSV.

By substituting the transforms and compositors in our filter trees by more
sophisticated operations, we believe that evolving filters could be a very useful
tool in an environment such as Adobe Photoshop: inexperienced users could ask
the software to produce a filter using only an example image, and experienced
users could ask the software for variations on a theme. We believe that future
graphic design software should be able to act as such a creative collaborator,
and we hope to see Al methods being used increasingly in this field.
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