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Abstract. We investigate the automatic construction of visual scenes
via a hybrid evolutionary/hill-climbing approach using a correlation-
based fitness function. This forms part of The Painting Fool system,
an automated artist which is able to render the scenes using simulated
art materials. We further describe a novel method for inventing fitness
functions using the HR descriptive machine learning system, and we com-
bine this with The Painting Fool to generate and artistically render novel
scenes. We demonstrate the potential of this approach with applications
to cityscape and flower arrangement scene generation.

1 Introduction

The Painting Fool (www.thepaintingfool.com) is an automated artist which
has been designed primarily to produce interesting and aesthetically pleasing
artworks, but also to test certain high level theories about how people perceive
software as creative or not, within the computational creativity paradigm of
Artificial Intelligence. The Painting Fool has so far been employed to take digital
images and ground truths about those images, segment the images into paint
regions and render them stroke-by-stroke by simulating natural media such as
pencils, pastels and acrylic paints in a diverse range of styles.

We describe here an addition to The Painting Fool’s capabilities. In partic-
ular, we describe a novel application where the input to The Painting Fool is
not images, but rather a high-level description of a complex scene such as a
cityscape. It then uses a hybrid hill-climbing/evolutionary approach to generate
a segmentation according to the scene specification, and proceeds to render this
in an artistic style. As described in section 2, generic scenes are specified as a
set of elements and a set of desired correlations between aspects of the elements.
The hybrid evolutionary/hill-climbing search methods we tested for constructing
such scenes are described in section 3. Inspired by [2], we took this application
to the meta-level by using the HR machine learning system [4] to invent novel
fitness functions for scene elements, as described in section 4, with some illustra-
tive results given in section 5. To conclude, we argue that with this project, and
others, The Painting Fool has exhibited behaviour which is skillful, appreciative
and imaginative, and as such, could be described as creative.



2 Problem Description

We are interested in the problem of automatically generating scenes which poten-
tially contain hundreds of similar scene elements. We use a simple representation
of scenes as an ordered list of scene elements. To describe a generic scene to the
system, the user/developer must provide the following:

– high level details of the scene, namely the pixel height and width of the scene
and how many scene elements it should contain.

– a specification of a scene element in terms of a set of numerical attributes
and a range of values for each attribute.

– an (optional) set of attributes to be calculated from the specifying attributes
of a scene element, with suitable calculation methods.

– a set of desired correlations which the numerical attributes must conform to,
and a weighting indicating the importance of each correlation.

– a method for using the attributes of each element to transform it into a set
of colour segments as used by The Painting Fool.

With respect to the desired correlations that the user specifies, we calculate the
Pearson product-moment correlation of two numerical variables v1 and v2 to
approximate how they are related. This produces a value of: 1 if the variables
are positively correlated, i.e., if v1 increases, then so does v2; -1 if the variables
are negatively correlated, i.e., if one increases then the other decreases and vice-
versa; and 0 if they are not correlated. In addition to specifying which two
attributes of scene elements should be assessed by correlation, the user also
supplies the correlation value they require. For instance, if the user requires two
attributes to be completely positively correlated, they specify that the correlation
should score 1, but if they want the two attributes to have some, but not total
positive correlation, they might specify 0.5 as the required correlation score.

Using the terminology of Ritchie [10], our inspiring example has been scenes
approximating Manhattan-style skylines. To achieve such scenes, we described
them as being 1000 × 200 pixels in dimension with 300 elongated rectangular
scene elements. Each element is described by the following attributes: (i) x-
coordinate, of range 0-1000 (ii) y-coordinate, of range 60-100 (iii) width, of range
5-20 (iv) height, of range 20-100 (v) hue, of range 0-360 (vi) saturation, of range
0-1 and (vii) brightness, of range 0-1. We also provided methods to calculate (a)
the edge distance, i.e., the minimum distance of the scene element from the left
or right hand side of the scene and (b) the depth of the scene element, which
is the number of scene elements that are both earlier than the element in the
ordered list and overlap it. In addition, we specified 7 correlations with equal
weights that the scene element attributes should adhere to:

– the edge distance of a scene element should have a correlation of 1 with the
element’s (i) width, (ii) height, (iii) y-coordinate and (iv) saturation.

– the depth of a scene element should have a correlation of: (v) 1 with the
element’s saturation (vi) -1 with the element’s height and (vii) -0.5 with the
element’s brightness.



These correlations were chosen – after some experimentation – so that build-
ings in the middle of the scene appear bigger than those at the edges, and that
elements at the back of the scene are taller – so that they can be seen – and less
saturated, which is also true of the scene elements at the edge of the scene. This
gives the impression that the buildings at the edges and at the back are further
away than those in the centre of the scene (which is similar to the Manhattan
skyline as viewed from the Staten Island ferry).

3 Search Methods for Scene Generation

Recall that the user supplies a set of n correlation specifications, which can
be thought of as quadruples 〈u, v, r, w〉, where r is the required value that the
Pearson product-moment calculation p(u, v) should return for ordered lists of
real-numbered values u and v, and w is a weight such that

∑n
1 wi = 1, with the

weights indicating the relative importance of the correlation. These quadruples
can be expressed as a fitness function for scenes S which returns values in the
range 0 to 1 by calculating:

f(S) =
n∑
i

wi

(
1 − |ri − p(ui, vi)|

max{|1 − ri|, | − 1 − ri|}

)
This scores 1 if all specified pairs of scene element attributes in a scene are
perfectly correlated as per the specification, and 0 if their correlation score is as
far away as it can be from the specified value.

We first looked at an evolutionary approach to generating scenes which max-
imise the fitness function. As in a standard evolutionary approach, the user
specifies the population size, number of generations, mutation rate and crossover
method (1-point or 2-point). An initial population of scenes each containing the
requisite number of scene elements is then generated randomly. This is done by
choosing values for each scene element attribute in each scene randomly from
those allowed by the user-specified range. The fitness f(S) for each scene S in the
population is calculated, and S is given an overall score e(S) by dividing f(S)
by the average of f over the entire population. be(S)c copies of S are placed
into an intermediate population, with an extra one added with a probability
of e(S) − be(S)c. Pairs are chosen randomly from the intermediate population
and an offspring is produced from them via crossover. Doing so is a relatively
straightforward matter, as each scene is an ordered list of scene elements of a
fixed size, hence sequential blocks of scene elements are simply swapped from
the parents into the offspring. Offspring are mutated and added to the new pop-
ulation until there are the requisite number of individuals in the population.
Each scene element in an offspring is chosen for mutation with a probability
proportionate to the mutation rate. To perform a mutation, the chosen scene
element is removed, then a completely new one is generated and inserted into
the ordered list at a random position.

We also experimented with a hill-climbing approach. Here, a random scene
is generated as above and each scene element is altered in turn in a single pass.



This is done by choosing a random value for each numerical attribute (and
position in the ordered list) and checking whether this improves the fitness of
the entire scene. If so, the new value is kept, but if not, the original value is
re-instated. The user specifies a repetition factor for hill-climbing. This dictates
the number of times a random value is chosen for each attribute of each scene
element, and is usually in the range 1 to 100. With initial experimentation using
simple cityscape scene descriptions, we found that both approaches were able
to produce scenes with fitness over 0.9 in search sessions lasting only a few
minutes. However, with our inspiring example of Manhattan cityscapes, which
uses 7 correlations, we found that we could only achieve fitnesses between 0.8 and
0.9, using population sizes and generation numbers that resulted in run-times
over 10 minutes. Moreover, on inspection of the scenes produced with fitness less
than 0.9, we found that they were not of sufficiently high quality for our purposes.
Hence, we also experimented with a hybrid approach, whereby an evolutionary
approach is first attempted, and the most fit individual ever recorded becomes
the basis of a hill-climbing search. We found that this performed better than
both stand-alone methods.

To determine the optimal search strategy in terms of the highest achievable
fitness in a reasonable time, we searched for solutions to the Manhattan exam-
ple with 56 different search setups. For the evolution-only approach, we varied
population size (100, 500 and 1000), number of generations (100, 500), muta-
tion rate (0, 0.1, 0.01 and 0.001) and crossover method (1 and 2 point). For
hill-climbing, we tested 1, 5, 10 and 100 repetition steps. We then examined the
results and chose four hybrid setups to test. The best 20 setups are presented
in figure 1 along with the fitness achieved and the time taken (all experiments
were performed on a 2.4Ghz machine running Mac OS X).

Fig. 1. Best 20 search setups for generating Manhattan-style scenes. Time taken in sec-
onds and fitness are indicated at the top of each bar, with the search setup parameters
given below each bar: pop=population size, gen=number of generations, mut=mutation
rate, cross=crossover method [(1p)oint and (2p)oint], hc=hill-climbing repetition.



There were some interesting findings in these results. Firstly, we noted that
anything but a 0.001 mutation rate resulted in premature convergence, which
– as suggested by a reviewer – is probably due to the roughness of the fitness
landscape. We found little discernable difference between 1 point and 2 point
crossover, and as expected, with evolution only, the fitness achieved was largely
proportional to the population size and number of generations. The quickest
setup (labelled setup A in figure 1) achieved a fitness of 0.78 in only 9 seconds,
using hill-climbing with repetition factor 1. We found that hill-climbing with a
repetition rate of 100 achieved a fitness of 0.88, but took more than 10 minutes
to achieve (setup C). In comparison, the best evolved (non-hill-climbing) scene
had a fitness of 0.82 and took 670 seconds to produce (setup B). In contrast, an
evolutionary approach with population size 100 for 100 generations followed by
a hill-climbing session with repetition factor 10 achieved fitness 0.9 in only 98
seconds (setup D). It seems likely that we could achieve better results with differ-
ent settings, and perhaps by using an iterative hill-climbing approach. However,
as our main focus is on automatically generating fitness functions, and setup D
performs adequately for that task, we have not experimented further yet.

In figure 2, we show the scene generated using search setup D, which achieved
a fitness of 0.9. We see that, while there are a few outliers amongst the scene
elements, the desired properties of the scene are there. That is, the buildings at
the left and right of the scene are smaller in both width and height, less saturated
and higher, which gives them the appearance of distance. Also, the buildings at
the back of the scene are taller, less saturated and slightly brighter, again giving
the impression of distance. In figure 2, we also present two rendered versions
of the cityscape. The first is rendered using simulated coloured pencil outlining
(with a reduced palette of urban colours) of the buildings over a simulated pastel
base on art paper. The second is rendered using simulated acrylic paints over a
pastel base, on primed canvas, giving a slightly three dimensional effect.

Fig. 2. Evolved setup D cityscape scene, rendered with: block shapes; simulated pastels
and pencils; and simulated acrylic paints.



4 Automatic Invention of Fitness Functions

One of the defining aspects of Cohen’s AARON program [9] is that it invents
scenes. This has been a motivation for development of the scene generation
abilities of The Painting Fool. However, with the approach described above, it is
difficult to state that The Painting Fool fully invents the scenes it paints, because
the user must specify both the scene elements and some required properties of
the scene as a whole, i.e., by specifying a fitness function in the form of a set of
weighted correlations. We have also been motivated by Buchanan [2] and others
in their opinion that meta-level reasoning is essential for creative behaviour. For
this reason, we decided to use the HR system to invent fitness functions so that
the user is able to specify only the types of elements a scene should contain.

The HR system is a descriptive machine learning program which starts with
minimal information about a domain and generates examples, invents concepts
which categorise the examples, makes hypotheses which relate the concepts, and
proves these hypotheses using third party reasoning systems. HR has been de-
scribed extensively elsewhere, e.g., [4, 7]. For our purposes here, we need to know
only that it is able to take background concepts which describe objects of inter-
est and invent new concepts via a set of generic production rules. For instance,
in number theory [3, 6], HR is given just the ability to multiply two numbers
together. It then invents the concept of divisors, using its exist production rule,
then the concept of the number of divisors of an integer, using its size production
rule, then the concept of integers with exactly two divisors (prime numbers), us-
ing its split production rule. In this way, HR invented novel integer sequences
which, in the terminology of Boden [1], were H-creative. HR has been used in a
number of other mathematical domains, in particular finite algebras [11].

To enable HR to invent fitness functions for scene generation, we made the
objects of interest in theory formation sessions the scenes, with each object
described by its scene elements, and each scene element described by a set of
numerical attributes. Hence, the background concepts supplied to HR were es-
sentially the set of attributes of scene elements specified by the user. In addition,
we have extended HR to work with floating point data. To do so, we wrote a
floating-point version HR’s existing arithmetic production rule. The new version
is able to take, for instance, the concepts describing the height of scene elements
and the x-coordinate of scene elements and invent the concept of the height plus
the x-coordinate of scene elements. In a similar manner, HR can subtract, mul-
tiply and divide pairs of floating point concepts. We also implemented two new
production rules. Firstly, the correlation rule is able to take two pairs of float-
ing point concepts and produce the concept of the correlation between the two.
Secondly, the float-summary production rule is able to take in a single floating
point concept and produce a concept with summary details about the values,
namely the minimum/maximum/average value, the smallest difference between
two values and the range of the values. Note that, while we have described these
new rules in terms of scenes and scene elements, they are generic and would
work in any other domain with floating point background concepts.



Input
S: scene overview specifications (number of scene elements, scene width & height)
E: scene element attributes and ranges for the attributes
R: rendering specifications

Algorithm
1. Using E, R and S, TPF generates five scenes randomly with 10 elements
2. TPF translates the scenes into a HR input file
3. TPF invokes HR to produce a theory using 1000 steps
4. HR translates its theory into a Java class, J , and compiles it
5. TPF constructs a random population, P of 100 scenes according to S
6. while (maxfitness(P, F ) < 0.4 or maxfitness(P, F ) > 0.8)

TPF builds a fitness function F by choosing 3 to 6
correlation concepts from J and giving them equal weights

7. TPF evolves a best scene, B, according to F using setup D (see section 3)
8. TPF hill-climbs to improve B using repetition factor 10 (setup D again)
9. TPF translates B into a segmentation, G
10. TPF renders G according to R

Fig. 3. Overview of the interaction between HR and The Painting Fool (TPF).

In figure 3, we describe in overview how a combination of The Painting Fool
and HR were used to automatically construct a fitness function, use this to
search for a scene which maximises the fitness, and then render the scene. Note
that, to keep HR’s run-time to around two minutes, it is only supplied with 5
scenes of 10 elements, which is enough for it to form a theory. Note also that,
in step 6, The Painting Fool builds a fitness function using a Java class that HR
has generated. The Java class is able to take a scene and calculate a fitness for
it. The Painting Fool constructs the fitness function as an equally-weighted sum
of between 3 and 6 correlation concepts randomly chosen from HR’s theory. It
checks that the best fitness in a randomly generated population of 100 scenes
is above 0.4 (so that there is a chance of evolving a scene to above 0.9 fitness),
and below 0.8 (which ensures that a random scene will not be output). If this is
not true of the fitness function it has constructed, it tries again until it succeeds.
As an example, the first cityscape scene generated in a session described in the
next section was generated using a fitness function with the five equally weighted
correlations below. The scene generated using this is given in figure 4.

cor(brightness, x-coord) = 1
cor(y-coord - x-coord, brightness) = -1 cor(brightness, height) = 1
cor(y-coord * x-coord, height) = 1 cor(saturation, height) = -1

Fig. 4. Scene generated with an automatically invented fitness function.



5 Illustrative Results

We present here two scene generation sessions with The Painting Fool/HR.
Firstly, we used the cityscape scene specification as above, and the algorithm
in figure 3 to generate a fitness function. We repeated this 10 times, with the re-
sults from the session given in figure 5, alongside two randomly generated scenes
for comparison. In each of the 10 generated scenes, there are at least two notice-
able patterns, e.g., in scene E, the buildings are more colourful at the edges and
wider on the left than on the right. In scenes B and G, two distinct clusters of
buildings were generated, which we did not expect, and in scene C, the fitness
function forced some buildings to be placed vertically on top of each other, which
was also not expected. The fitness of the scenes were in the range 0.88 to 0.94.

In the second session, we tested the flexibility and ease by which the system
can be given a new task, using arrangements of flowers, as this is quite different
to cityscapes. We chose 17 closely cropped digital images of flowers, and used
The Painting Fool to generate the segmentations of these. We then described
the generic scene in terms of scene elements with the following properties: size
(30 to 150), x and y coordinates (both 0 to 400), and flower number (1 to
17). We wrote code so that when The Painting Fool translates the scenes into
segmentations, it simply retrieves the segmentation for the appropriate flower
number from file. We also wrote code able to calculate (i) the distance of the
scene element from the centre of the scene and (ii) the position in the ordered
list that the scene element appears at. To test the scene specification, we used a
fitness function with three correlations: cor(centre-distance, flower-number) = 1;
cor(centre-distance, size) = -1; cor(centre-distance, pos) = -1. This meant that
the scenes had flowers around the edge which were smaller (with the smaller
ones being painted later than the larger ones), and that the flowers portrayed
changed from the centre to the outside of the scene.

A F

B G

C H

D I

E J

R1 R2

Fig. 5. Cityscape scenes generated in session 1 using invented fitness functions (A to
J), compared to random cityscapes (R1 and R2).



Fig. 6. Cartesian flower arrangement scene; polar coordinate scene 1, rendered with
simulated acrylic paints onto a painting of leaves; polar coordinate scene 2, rendered
with simulated pastels and pencils; four invented flower arrangement scenes.

We ran a search using setup D to generate a scene with 150 flowers in it,
with the resulting scene given in figure 6. We also repeated this experiment
twice using polar instead of Cartesian coordinates for the scene elements, to give
a circular arrangement of the flowers. In figure 6, we present artistic renderings
of the two polar coordinate scenes. Using the Cartesian setup, we then ran the
automatic invention of fitness function routine 10 times, but to produce scenes
with only 50 elements, and we chose the four most interesting to show in figure
6 (an entirely subjective choice by the author). As with the invented cityscapes
of figure 5, each of the four scenes clearly exhibits a pattern. However, of the
six other scenes from the session (which are not shown), with four of them,
we could discern no obvious scene structure. These scenes scored less than 0.8
for fitness, and on inspection, this was because the fitness functions needed
to achieve contradictory correlations. With fewer attributes to seek correlations
between in this application than in the previous one, the likelihood of generating
such contradictory fitness functions was higher. We aim to get The Painting
Fool to avoid such cases in future. Including the time taken to find and segment
the flower photographs and for us to write the necessary code for attribute
calculation and segmentation translation, the entire session took around 4 hours.

6 Conclusions and Further Work

We have described a hybrid evolutionary/hill-climbing approach to the construc-
tion of scenes, via a correlation based fitness function, and a method which uses
the HR system to invent such fitness functions. To the best of our knowledge,
while this work fits into the context of co-evolution of fitness functions such as
in [8], it is the first time a descriptive machine learning system has been used to



invent a fitness function. We demonstrated this for two types of scene, namely
cityscapes and flower arrangements. As suggested by two reviewers, we have
compared the scenes generated using HR’s invented fitness functions against
ones generated using an equal weighting of randomly chosen correlations. While
these scenes showed clear patterns, as the randomly generated fitness functions
are a subset of those produced by HR, the scenes lacked variety somewhat.
We plan to undertake more extensive experimentation to qualify these findings.
We have used only a fraction of HR’s abilities in the experiments here, and we
plan to use HR to invent more sophisticated fitness functions, and to investi-
gate using HR in evolutionary problem solving in general. We plan many other
improvements, including: non-correlation based fitness functions; multiple sub-
scenes; post-processing of scenes to remove outliers; 3d scene generation; and –
as suggested by the reviewers – the generation of fitness functions from exemplar
scenes, and the usage of a multi-objective evolutionary approach.

As described in [5], we believe that software exhibiting skill, appreciation and
imagination should be considered creative, and we are building The Painting Fool
along these lines. In two other projects (the Amelie’s Progress gallery and the
Emotionally Aware application described on www.thepaintingfool.com), The
Painting Fool has exhibited behaviour which could be considered appreciative.
In enabling it to invent fitness functions and generate scenes using them, we have
implemented some more imaginative behaviour, and we hope to have added a
little to the case that the software is creative in its own right.
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